STABILITY OF THE DOMINANT MODE OF THE NONLINEAR
WAVE EQUATION IN A CUBIC MEDIUM

A. A, Kolokolov UDC 535.1

In a parabolic approximation, a criterion has been found for the stability of the dominant mode of a
scalar wave equation for a cubic inertialess medium. The criterion obtained is used to demonstrate the
stability of one-dimensional and two-dimensional modes, and the instability of a three-dimensional mode,
with respect to small perturbations of amplitude and phase.

One important problem in the theory of self-focusing is the stability of steady-state solutions of a
nonlinear wave equation [1-4]. In the present work an investigation was made of the stability of the domi-
nant mode in the one-dimensional, two-dimensional, and three-dimensional cases, with respect to small
perturbations of the amplitude and the phase, for a cubic inertialess medium.

The equation describing the propagation of the enveloping electrical field E of a light beam, in the
parabolic approximation, has the form [1]
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where the wave is propagated along the x axis.

With y >0, Eq. (1) has a denumerable set of solutions of the form E; =Ap(r) exp(iy z), where Ay
satisfies the eguation [5]

— A, A|“s =0 (2)

and the boundary conditions
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Let us consider the stability of the dominant mode Ej=Aexp(iy z), for which A;> 0 at all values of
r and the operator Ly=—A,+y—A(? is not negative, where A, is an eigenfunction of L, with a null eigen-
value. Since A, nowhere reverts to zero, it is a fundamental function of the operator L,, and the null
eigenvalue is the least. Substituting into (1)

E = (AL 8P exp (iT12) (5% = (u+ iv) exp (22))
and leaving only terms of the first order with respect to u and v, we obtain
Qu-=Lw, Qv=—Lu (Li=Lo—2A¢?) (3)
Eliminating v from the equations, we arrive at the eigenvalues [3]
— Q@ = LyLw (4)

Since the operator L, has a null eigenvalue, in a complete Hilbert space, the finite inverse operator
L,~! does not exist. From (3) it follows that

1Q <Ao|uy == <Ay [ Louy = (Loydglud =10 ((A,,w) = ngudxdy)
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therefore, with Q = 0, all the solutions, u, of system (3) are orthogonal with respect to A, (here <A,/ u>
is a scalar product). Since solutions of system (3) with Q = 0 are under discussion, it is sufficient to in-
vestigate Eq. (4) in the subspace of functions orthogonal to A;. In this subspace, the inverse operator LO"1
can be applied to 4).

— @2 Leu=TLw, <(Agjuy=0
It follows from the variational principle that the least eigenvalue of —Q,? is equal to [6]

@lLilg>

@ Lo 9 (K21 45)> = 0) (5)

— Q> = min

With < ¢[Aj > =0, the value of < ¢|Ly!| ¢> is positive. Therefore, it is sufficient to investigate the
arbitrary minimum of the functional G= < ¢|L;| ¢>. If min G <0, there exist exponentially increasing per-
turbations and E, is unstable; if min G =0, all values of Q@ are purely imaginary or equal to 0, and E; is a
stable solution. It was shown in [3] that the absolute minimum of G is negative and, on this basis, a conclu-
sion was reached with respect to the instability of E,. However, a negative character of the absolute mini-
mum of G is a necessary but not sufficient condition for the existence of exponentially growing perturbations.
It is shown below that the arbitrary minimum of Gis equalto zero and, by the same token, the stability of E;
with respect to small perturbations of amplitude and phase is demonstrated.

Using the method of indeterminate Lagrangian multipliers, we can obtain an equation for a function of
¥, minimizing the functional G:

Lap = 2p + ado (6)
where A and « are coastants, determined from the conditions for orthogonality and normalizing
P lApy =0 <P P> =1, min G = min 3

Expanding ¢ and A, with respect to a complete orthonormalized system of eigenfunctions Ly(Ly¥, =
Ap¥n) and substituting these expansions into (6), we obtain

p=a ) T ‘n 5 b (0= plAp>)
n==1 n

The condition < Aj[¢> =0 leads to an equation for determining A:

o0

n 2
)= e =0 (7)

ne=1 N

A computer analysis of the spectrum of the operator L, showed that L, has one negative eigenvalue
A, =—b.44y, and a second eigenvalue A, =0; the corresponding eigenfunctions are orthogonal with respect
to A;. As a proof we differentiate (2) with respect to the parameter v:
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Lo oY 4 Ao — 24,2 + 4 =0

or
L1044/0y = —Ao 8)

Multiplying (8) on the left by the eigenfunctions L, corresponding to A,=0, we obtain

a4 a4
— (oo = <¢2 [ Ly} —a%> = <L1\P2 |—711 =0

It follows from this that ¢, = < ¢,[A;> =0. We note that ¢, =0, since ¥,, as a fundamental function
of the operator L,, does not have a null value and cannot be orthogonal with respect to A, which also no-
where reverts to zero. Thus, the least value of Ay in Eq. (7) lies between A, and A4 > 0. To determine the
sign of A it is sufficient to determine f (0) since, in the interval x; < A <A,;,7 (1) rises monotonically from
—w to +0. With £(0) >0, A, <0, with f(0) =0, Ay =0,

From (7) and (8) it follows that

o el 8, 1 df
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427



where I= < Ag|A)> is the energy of the dominant mode.
The solution of Eq. (2) can be written in the form
0= V390 (Vr)

since
o0 o

I= Zn\ Ad?rdr = ZJ‘ES ®o* (p) pdp
0 0

does not depend on y and dI/dy =0. Consequently, f(0)=0 and the arbitrary minimum of G=0. Thus, all
the values of Q of problem (3) are purely imaginary or equal to zero. A computer analysis of system (3)
also showed the absence of solutions with real values of @ # 0. From this the conclusion can be drawn that,
in a linear approximation with respect to the perturbation, the dominant mode E; is stable.

An analogous train of reasoning can be carried through for the one-dimensional and three-dimensional
Eq. (2), and it can be shown that the stability of the dominant mode is also determined by the sign of the
derivative of its energy with respect to the parameter y. In the one-dimensional case the dominant mode
has the form

4 = VZy/ch (Vv2) |

therefore, its energy is equal to

w
Zsz —
I = (Aol As) ——S =4 V7
b2 (V71 2)

dI/dy* 2V v>0

Consequently, the arbitrary minimum of G = 0, and the one-dimensional dominant mode in a cubic
medium is stable. In the three-dimensional case, the dominant mode can be represented in the form

&
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a dominant mode with spherical symmetry in a cubic inertialess medium is unstable. Computer calcula-
tions have shown that, in the case of spherical symmetry, system (3). with Q =5.9 v has a solution satisfy-
ing the boundary conditions

du
dr

dv
=0 = dr

=0, u (00) = v {o0) =0

r==g
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